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Abstract: White adipose tissue/brown adipose tissue trans-differentiation is one of the main study
targets for therapies against obesity and metabolic diseases. In recent years, numerous molecules able
to induce such trans-differentiation have been identified; however, their effect in obesity therapies has
not been as expected. In the present study, we investigated whether myo-inositol and its stereoisomer
D-chiro-inositol could be involved in the browning of white adipose tissue. Our preliminary results
clearly indicate that both, at 60 µM concentration, induce the upregulation of uncoupling protein 1
mRNA expression, the main brown adipose tissue marker, and increase mitochondrial copy number
as well as oxygen consumption ratio. These changes demonstrate an activation of cell metabolism.
Therefore, our results show that human differentiated adipocytes (SGBS and LiSa-2), assume the
features typical of brown adipose tissue after both treatments. Furthermore, in the cell lines examined,
we proved that D-chiro-inositol and myo-Inositol induce an increase in the expression of estrogen
receptor mRNAs, suggesting a possible modulation by these isomers. We also found an increase in
the mRNA of peroxisome proliferator-activated receptor gamma, a very important target in lipid
metabolism and metabolic diseases. Our results open new opportunities for the use of inositols in
therapeutic strategies to counteract obesity and its metabolic complications.

Keywords: brown adipose tissue; white adipose tissue; D-chiro-inositol; myo-inositol; obesity;
trans-differentiation; UCP-1; PPAR-γ; estrogen receptor

1. Introduction

A pivotal study carried out in 195 countries over 25 years by the collaborators of
the Global Burden of Disease [1] revealed that, in 2015, 107.7 million (5%) children and
603.7 million (12%) adults were obese, worldwide [2]. Obesity is a chronic metabolic
disease caused by different factors: genetic, environmental, psychological, and social. It is
characterized by long-term imbalance between energy intake and energy expenditure and
by an imbalance of white adipose tissue (WAT) and brown adipose tissue (BAT).

There are three distinct adipocyte types in humans, namely, white, brown, and beige
adipose tissue, according to their function and morphology [3–6]. Essentially, WAT and
BAT play antagonistic functions; WAT works as fat storage and energy stock, while BAT
dissipates energy producing heat, also helping to maintain internal body temperature.
White adipocytes have a size ranging from 20 to 200 µm, contain few mitochondria and
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only one vacuole that occupies ~90% of cell volume, where lipids are stored and mobilized
during the energy expenditure phase. These cells from WAT give rise to several fat depots
that are distributed in two anatomical compartments of the body: subcutaneous and
visceral. In contrast, brown adipocytes have a large number of mitochondria, containing a
unique protein known as uncoupling protein 1 (UCP-1). The high number of mitochondria
is also responsible for the characteristic staining of this tissue. Furthermore, BAT cells
are characterized by multilocular lipid droplets and are smaller (15–50 µm) than WAT
adipocytes. BAT tissue does not store energy but dissipates it through thermogenesis.

In the past three decades, fat cells similar to brown adipocytes were also identified.
They are beige in color and positive for the expression of UCP-1, that “appears” in response
to specific stimuli such as physical exercise, exposure to cold or some hormones. Unlike BAT,
they can accumulate in typical WAT deposits and were named beige or “brite” adipocytes
(a combination of the English terms brown and white). Although beige adipocytes display
characteristics similar to BAT cells, they have different anatomical locations. In fact, the
beige adipocytes are detectable in the subcutaneous regions where normally WAT occurs,
and BAT is absent [7].

Therefore, based on what is currently known and currently used drugs, the future
strategies to fight obesity could involve not only diets, fat absorption and inhibition or
decrease in appetite, but also treatments with drugs. Current drugs used to treat obesity
include: (1) orlistat, an inhibitor of gastrointestinal lipase that decreases fat absorption;
(2) the association between phentermine and topiramate, an amphetamine-like compound
and an anti-convulsing drug that seems to inhibit the appetite; (3) liraglutide, an agonist
of the receptor of glucagon-like peptide 1, which induces a delay in gastric emptying and
decreases appetite [8]. Moreover, treatments with specific drugs that induce WAT/BAT
trans-differentiation could be particularly useful to treat obesity. So far, only a few drugs
have been approved in the world for obesity therapies; however, their effect has not
been as expected. Therefore, it is necessary to find novel compounds that can induce
WAT/BAT trans-differentiation and evaluate their efficacy in human obesity therapies. In
our study, we tested the effects of two natural molecules involved in several metabolic
pathways, the stereoisomers myo-inositol (myo-Ins), which constitutes over 99% of the
inositol pool, and D-chiro-inositol (D-chiro-Ins). An insulin-dependent epimerase gives rise
to D-chiro-Ins from myo-Ins, especially in the liver, muscles, and blood, where the highest
conversion rate (~60%) is found [9]. Both myo-Ins and D-chiro-Ins, in the form of inositol
phosphoglycan, are insulin second messengers and influence cell metabolism, by activating
key enzymes involved in oxidative and non-oxidative glucose metabolism. One of the
most significant activities of both myo-Ins and D-chiro-Ins concerns glycemia regulation.
Specifically, D-chiro-Ins participates in glycogen synthesis, while myo-Ins promotes glucose
cellular uptake [10,11]. As therapeutic agents, both stereoisomers exert an insulin-mimetic
activity and are also effective against insulin resistance [10,11]. They also play other pivotal
physiological roles, such as promoting ovulation and fertility [12,13]. Moreover, other
studies reported that dietary myo-Ins deficiency could result in lipid accumulation in the
liver of rats [14] and fish [15,16]. D-chiro-Ins also plays a key role in lipid metabolism
regulating steroid production in rats [17] and adipocyte differentiation in human cells [18].
A recent paper highlighted that this stereoisomer, as myo-Ins, can upregulate the gene
expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) [17].

In recent years, myo-Ins and D-chiro-Ins were widely used in several treatments, the
most important in patients with polycystic ovary syndrome, due to the physiological and
therapeutic properties that emerged, and are still emerging, from many experimental and
clinical studies. Polycystic ovary syndrome is a complex condition that is diagnosed from
the presence of two out of three criteria: anovulation; hyperandrogenism; and cystic ovaries.
These patients are usually affected by insulin resistance, and clinical evidence exists on the
use of myo-Ins and D-chiro-Ins in these patients.

We tested these compounds in two different human adipocyte models, Simpson–
Golabi–Behmel syndrome cells (SGBS) and LiSa-2, subcutaneous and visceral adipocytes,
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respectively. Indeed, both the cell lines consist of adipocyte-like cells, and such a tendency
to differentiate into adipocyte makes them the perfect models to mimic an in vivo condition
and study the effect on the differentiation and the browning processes of a supplementation
with inositols [19]. The results described here showed that in such models both myo-Ins
and D-chiro-Ins could induce WAT/BAT trans-differentiation, probably activating the
estrogen signaling pathway and/or modulating PPAR-γ gene expression.

2. Results
2.1. Modulation of UCP-1 mRNA

Figure 1 reports the modulation of UCP-1 mRNA, the main marker of the trans-
differentiation process, in SGBS and LiSa-2 cells, after treatment with D-chiro-Ins (60 µM)
and myo-Ins (60 µM). Following treatment with D-chiro-Ins, UCP-1 mRNA was over
expressed in both SGBS and LiSa-2 cells, whereas myo-Ins induced a significant positive
modulation only in visceral adipose tissue cells (LiSa-2). Our data suggest that D-chiro-Ins
and myo-Ins can induce WAT/BAT trans-differentiation through UCP-1 activation.
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Figure 1. Modulation of the UCP-1-messenger expression in two adipocyte cell lines, (A) SGBS cells,
subcutaneous fat and (B) LiSa-2 cells, visceral fat. D-chiro-Ins and myo-Ins concentrations used for
the experiments were 60 µM. Results are reported as mean ± SD of data obtained from 3 independent
experiments in technical triplicate. Bars show log 2-fold change (treated vs. control). Data were
analyzed by one-way ANOVA. p-values ≤ 0.05 were considered statistically significant. * p < 0.05
versus control; ** p < 0.01 versus control.

2.2. Increase in Mitochondrial DNA Copy Number

To confirm the ability of D-chiro-Ins and myo-Ins to induce WAT/BAT trans-differentiation,
we also evaluated mitochondrial DNA copy number by quantitative real-time polymerase
chain reaction (PCR). In fact, metabolically active adipose tissue increases energy dissipation
by increasing the numbers of mitochondria. As can be seen in Figure 2, mitochondrial DNA
increased both in SGBS and LiSa-2 cells, but a significant increase occurred only following
D-chiro-Ins treatment.

2.3. Oximetry Assessment

As a further confirmation of D-chiro-Ins and myo-Ins ability to induce WAT/BAT trans-
differentiation, we assessed the oxygen consumption ratio of the differentiated adipocytes
(both SGBS and LiSa-2) after 72 h of treatment. Antimycin was used as a negative control.
Our experiments clearly show (Figure 3A,B) that an increase in oxygen consumption is
found in both SGBS and LiSa-2 cells, indicating a greater functioning of the mitochondria
in the two cell lines. We also included the experiments performed on untreated cells. The
treatment induced an increase in oxygen consumption with respect to untreated cells. This
is particularly evident in all the timepoints for SGBS cells, except for the 10 min timepoint
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(Figure 3A). In the case of LiSa-2 cells (Figure 3B), the treatment with D-chiro-Ins recorded
significant differences in oxygen consumption except for the 10 min timepoint, while myo-
Ins-treated cells exhibited higher oxygen consumption with respect to untreated cells in all
the timepoints except for 25 min. The only significant differences between the treatments
with myo-Ins and D-chiro-Ins were recorded at 5 and 25 min in SGBS cells and at 30 and
40 min in LiSa-2 cells.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 2. Modulation of mitochondrial DNA copy number in (A) SGBS cells and (B) LiSa-2 cells. 
SGBS and LiSa-2 differentiated adipocytes were treated with D-chiro-Ins (60 µM) and myo-Ins (60 
µM) for 72 h, with a single medium change at 36 h. Results are reported as mean ± SD of data 
obtained from 3 independent experiments in technical triplicate. Relative DNA mitochondrial copy 
number was calculated from the difference between the threshold cycle (CT) values for 
mitochondrial DNA and nuclear specific amplification. Bars show log 2-fold change (treated vs. 
control). Data were analyzed by one-way ANOVA. p-values ≤ 0.05 were considered statistically 
significant. ** p < 0.01 versus control. 

2.3. Oximetry Assessment 
As a further confirmation of D-chiro-Ins and myo-Ins ability to induce WAT/BAT 

trans-differentiation, we assessed the oxygen consumption ratio of the differentiated 
adipocytes (both SGBS and LiSa-2) after 72 h of treatment. Antimycin was used as a 
negative control. Our experiments clearly show (Figure 3A,B) that an increase in oxygen 
consumption is found in both SGBS and LiSa-2 cells, indicating a greater functioning of 
the mitochondria in the two cell lines. We also included the experiments performed on 
untreated cells. The treatment induced an increase in oxygen consumption with respect 
to untreated cells. This is particularly evident in all the timepoints for SGBS cells, except 
for the 10 min timepoint (Figure 3A). In the case of LiSa-2 cells (Figure 3B), the treatment 
with D-chiro-Ins recorded significant differences in oxygen consumption except for the 10 
min timepoint, while myo-Ins-treated cells exhibited higher oxygen consumption with 
respect to untreated cells in all the timepoints except for 25 min. The only significant 
differences between the treatments with myo-Ins and D-chiro-Ins were recorded at 5 and 
25 min in SGBS cells and at 30 and 40 min in LiSa-2 cells. 

 
Figure 3. Oxygen consumption ratio in SGBS cells (A) and LiSa-2 cells (B). SGBS and LiSa-2 
differentiated adipocytes were treated with D-chiro-Ins (60 µM) and myo-Ins (60 µM) for 72 h, with 
a single medium change at 36 h. Results are reported as mean ± SD of data obtained from 3 

Figure 2. Modulation of mitochondrial DNA copy number in (A) SGBS cells and (B) LiSa-2 cells.
SGBS and LiSa-2 differentiated adipocytes were treated with D-chiro-Ins (60 µM) and myo-Ins (60 µM)
for 72 h, with a single medium change at 36 h. Results are reported as mean ± SD of data obtained
from 3 independent experiments in technical triplicate. Relative DNA mitochondrial copy number
was calculated from the difference between the threshold cycle (CT) values for mitochondrial DNA
and nuclear specific amplification. Bars show log 2-fold change (treated vs. control). Data were
analyzed by one-way ANOVA. p-values ≤ 0.05 were considered statistically significant. ** p < 0.01
versus control.
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Figure 3. Oxygen consumption ratio in SGBS cells (A) and LiSa-2 cells (B). SGBS and LiSa-2 differen-
tiated adipocytes were treated with D-chiro-Ins (60 µM) and myo-Ins (60 µM) for 72 h, with a single
medium change at 36 h. Results are reported as mean ± SD of data obtained from 3 independent
experiments in technical triplicate. Data were analyzed by one-way ANOVA. p-values ≤ 0.05 were
considered statistically significant.

2.4. Expression of Estrogen Receptors (ERα and ERβ) mRNAs

We observed (Figure 4) that D-chiro-Ins and myo-Ins increase estrogen receptor α

(ERα) and estrogen receptor β (ERβ) mRNA levels in both cell lines. In particular, we
noticed by optical microscopy that the upregulation of ERα and ERβ mRNAs in SGBS
cells (Figure 4A) was associated with the formation of many lipid droplets with respect



Int. J. Mol. Sci. 2023, 24, 7421 5 of 13

to untreated cells (data not shown), a typical feature shown by differentiated SGBS cells.
On the other hand, we also observed a significant increase in ERα and ERβ mRNAs in
LiSa-2 cell lines only following D-chiro-Ins treatment (Figure 4). Therefore, we supposed
that D-chiro-Ins and myo-Ins could induce WAT/BAT trans-differentiation mediated by
classical estrogen-triggered pathways.
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Figure 4. Modulation of estrogen receptor mRNA expression in (A) SGBS and (B) LiSa-2 differentiated
adipocytes treated with D-chiro-Ins (60 µM) or myo-Ins (60 µM) for 72 h, with a single medium
change at 36 h. Results are reported as mean ± SD of data obtained from 3 independent experiments
in technical triplicate. Bars show log 2-fold change (treated vs. control). Data were analyzed by
one-way ANOVA. p-values ≤ 0.05 were considered statistically significant. * p < 0.05; ** p < 0.01
versus control.

2.5. Increase in PPAR-γ Gene Expression

Finally, we also tested the mRNA expression of the two variants of PPAR-γ (variant 1
and variant 2), given their already identified role in WAT/BAT trans-differentiation and
in lipid metabolism. As shown in Figures 5 and 6, the two variants were significantly
upregulated in SGBS and in LiSa-2 cells for both treatments with inositol stereoisomers. In
our experiment, we did not observe any significant difference for PPAR-γ variants between
D-chiro-Ins and myo-Ins treatments.
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Figure 5. Modulation of the expression for the PPAR-γ variant 1 (PPAR-γ v1) messenger in (A) SGBS
and (B) LiSa-2 adipocyte cells. D-chiro-Ins and myo-Ins concentrations used for the experiments
were 60 µM. Results are reported as mean ± SD of data obtained from 3 independent experiments
in technical triplicate. Bars show log 2-fold change (treated vs. control). Data were analyzed by
one-way ANOVA with repeated measures followed Duncan–Waller post hoc test. p-values ≤ 0.05
were considered statistically significant. * p < 0.05 versus control; *** p < 0.001 versus control.
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Figure 6. Modulation of the expression for the PPAR-γ variant 2 (PPAR-γ v2) messenger in (A) SGBS
and (B) LiSa-2 adipocyte cells. D-chiro-Ins and myo-Ins concentrations used for the experiments
were 60 µM. Results are reported as mean ± SD of data obtained from 3 independent experiments
in technical triplicate. Bars show log 2-fold change (treated vs. control). Data were analyzed by
one-way ANOVA with repeated measures followed Duncan–Waller post hoc test. p-values ≤ 0.05
were considered statistically significant. * p < 0.05 versus control; ** p < 0.01 versus control.

3. Discussion

In our experiments, we demonstrated that D-chiro-Ins and myo-Ins induce WAT/BAT
trans-differentiation in the two principal adipocyte human cell models: SGBS and LiSa-2.
SGBS cells are non-immortalized pre-adipocytes isolated by subcutaneous fat tissue,
whereas LiSa-2 is a liposarcoma of visceral fat. Both cell models are able to trans-differentiate
with specific external stimuli.

A fundamental aspect of BAT/beige regulation is the stimulation of UCP-1 [20]. UCP-1
is expressed only in brown/beige adipocytes. It increases the proton conductance in
the inner mitochondrial membrane of these specific adipocytes, thus determining the
uncoupling of the respiratory chain and the production of heat. This action of UCP-1 in
BAT is the main molecular basis for thermogenesis in homeothermic mammals in response
to exposure to cold and diet [21]. In our experiments, D-chiro-Ins treatment induced an
increase in UCP-1 mRNA levels in both cell lines (visceral and subcutaneous adipose tissue),
while for myo-Ins, a significant positive modulation was detected only in visceral adipose
tissue cells (LiSa-2), showing a differentiation of adipocyte towards BAT-type characteristics.
These results were confirmed by the increase in mitochondrial DNA copy number, even
if such an effect was only observed in the D-chiro-Ins treatments, in both adipocyte cell
models. Finally, an increased consumption of extracellular oxygen was found in SGBS and
in LiSa-2 adipocytes, for both inositol stereoisomer. Our data suggest that D-chiro-Ins could
promote WAT/BAT trans-differentiation, regardless of the cell lines used, while myo-Ins
seems to act mainly on visceral fat. Despite the non-significance of myo-Ins treatment in
increasing mitochondrial DNA, the increase in oxygen consumption likely suggests that
myo-Ins can induce trans-differentiation even in subcutaneous fat. Moreover, as the cells
can convert myo-Ins to D-chiro-Ins when necessary, we may hypothesize that this happened
in our model. Therefore, even though a significant change in UCP-1 was not detected
following myo-Ins treatment, the synergistic action of myo-Ins and de novo synthesized
D-chiro-Ins may explain the observed downstream effects, such as the increased oxygen
consumption. Such an increase in oxygen consumption and in thermogenesis determines
an increase in energy expenditure, which counterbalances the energy intake, thus helping
to maintain a stable body weight. Growing evidence supports the idea that BAT and
beige tissue-mediated thermogenesis contributes to energy dissipation, preventing and/or
counteracting obesity. This hypothesis is strengthened by in vivo studies suggesting that
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the activation of BAT and beige thermogenesis induces weight loss and WAT reduction in
mice [22,23]; likewise, an observational study of obese subjects highlighted the pivotal role
of beige tissue in the maintenance and loss of weight [24].

We have observed that, in SGBS and LiSa-2 cells, treatment with D-chiro-Ins and
myo-Ins induced an upregulation of ER (ERα and ERβ) mRNA. Our results confirm pre-
vious experimental data regarding the role of the estrogen signaling pathway in adipose
tissue and in obesity disease. In fact, recent reports show that estradiol stimulates BAT
metabolism and induces WAT beiging [25,26], and the expression of ESR1, the gene en-
coding ERα, is reduced in WAT from obese women [27]. Zhou and coworkers [28] have
demonstrated that the expression of ESR1 (ERα) is inversely associated with fat mass
and regulates mitochondrial function and energy homeostasis in WAT and BAT via the
coordinated control of mitochondrial DNA replication. These data suggest that a similar
mechanism occurred also in our experimental model. Moreover, adipose tissue is the
most important site for estrogen production outside the gonads due to the presence of the
enzyme aromatase, belonging to the family of cytochrome P450, which converts androgens
taken up from the circulation into estrogens [29]. Due to the presence of aromatase in
adipose tissue, the locally produced estrogen can affect metabolism regardless of plasma
estradiol levels [29]. Estrogen signaling is among the most significant regulator of BAT
activity and differentiation [30]. As was indirectly confirmed, the thermogenic activity
and UCP-1 mRNA expression in BAT are reduced by ovariectomy [31,32], while adminis-
tration of estradiol to ovariectomized mice induces UCP-1 expression in BAT [33]. Other
experiments carried out in primary cultures of murine brown adipocytes confirmed that
the estrogen pathway has a direct activating effect on brown adipocytes; for instance, by
inducing the mitochondrial biogenesis factors [29]. The mechanism by which estrogens
promote brown adipocyte proliferation and differentiation, including UCP-1 mRNA ex-
pression, is likely driven by ERα [34]. Considering our observations, we hypothesized that
D-chiro-Ins and myo-Ins could perform their WAT/BAT trans-differentiation effects by an
undefined mechanism involving the estrogen receptor; these results are also supported
by a recent study by Montt-Guevara and collaborators [18], who demonstrated that D-
Chiro-Ins can regulate human adipocytes (SGBS) directly, by enhancing their differentiation
and insulin receptor signaling in synergy with estrogen. Nonetheless, two clinical trials
in men showed that treatment with D-chiro-Ins significantly increased androgen levels
and decreased estrogen levels [35,36], supporting its current therapeutic use in specific
pathologies, i.e., those characterized by excessive estrogens or reduced androgens [37–39].
In this scenario, our current data opens a new window on the effects of these compounds
and indicates that the mechanism of action of D-chiro-Ins and myo-Ins is more complex
than previously thought. Therefore, further studies will be needed to investigate the role of
ERs in WAT/BAT trans-differentiation processes.

Finally, we also assessed the expression of PPAR-γ, a very important target in lipid
metabolism and metabolic diseases [40,41], that is induced by myo-Ins [42] and by D-chiro-
Ins [17]. PPAR-γ is highly expressed in both brown and white adipocytes and its activation
induces the trans-differentiation of brown adipocytes [43]. Our data confirm the role of
myo-Ins and D-chiro-Ins in the upregulation of PPAR-γ. Moreover, we have demonstrated,
for the first time, that myo-Ins and D-chiro-Ins can modulate the expression of two variants
of PPAR-γ, v1 and v2. The two variants are the product of an alternative splicing of the
same gene [44]. In particular, the PPAR-γ1 isoform lacks the first 30 N-terminal amino acids
compared to PPAR-γ2. In the presence of PPAR-γ ligands, both variants can induce adipo-
genesis, but PPAR-γ2 responds more efficiently to low ligand concentrations [45]. Despite
functional similarities [46], the PPAR-γ1 isoform is ubiquitously expressed, while PPAR-γ2
is limited to adipose tissue [47]. The finding that both myo-Ins and D-chiro-Ins stimulate
PPAR-γ2 clearly indicates that both the isomers play a role in adipose tissue. Moreover,
as inositols are commonly detectable in cellular membranes, we can speculate that the
regulation herein reported originates from the physiological mechanisms of browning.
Indeed, our work strongly suggests that inositols could represent valid molecules to treat
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obesity, as they could promote browning of both subcutaneous and visceral adipocytes,
contributing to weight-loss interventions.

4. Materials and Methods
4.1. Cell Culture SGBS

The SGBS human preadipocyte line was derived from the stromal vascular fraction
of subcutaneous adipose tissue of a male infant with Simpson–Golabi–Behmel syndrome,
first described in the early 2000s [48,49]. This syndrome is an X-linked recessive pathology
that is considered a congenital disorder and leads to the overgrowth of body districts,
including head, kidney, hearth, and tongue. These cells are considered as a really suitable
model for studies on the browning and differentiation of adipocytes [49]. These cells, first
isolated by professor Wabitsch, were generously sent by him in the proliferative phase
(28th generation). SGBS cells are neither transformed nor immortalized and provide an
almost unlimited source of cells, due to their ability to proliferate for up to 50 generations
without losing their characteristics and their ability to differentiate into mature adipocytes.
They provide an excellent experimental model for studying the subcutaneous fat and for
investigating mechanisms leading to the browning of WAT.

During the experiments, SGBS cells were amplified not further than the 35th generation
in DMEM-F12 medium (Dulbecco’s Modified Eagle’s Medium/Nutrient F-12 Ham) (Sigma-
Aldrich, Saint Louis, MO, USA) containing 33 µM biotin (Sigma-Aldrich, Saint Louis,
MO, USA), 17 µM pantothenic acid (Sigma-Aldrich, Saint Louis, MO, USA), 100 U/mL
penicillin/streptomycin (Sigma-Aldrich, Saint Louis, MO, USA) and 10% FBS (Gibco,
Billings, MT, USA). Growth medium was changed every 2 days and cells were cultured at
37 ◦C in a 5% CO2 incubator. Cells were cultured in this medium until complete confluence
was reached.

Adipocyte Differentiation Process

Differentiation started with SGBS cells at confluence (day 0) in the medium containing
10% FBS. Preadipocytes were washed with PBS, and then changed to the primary differen-
tiation serum-free medium (differentiation A media), for 4 days, containing: biotin 33 µM,
pantothenic acid 17 µM, penicillin/streptomycin 100 U/mL, rosiglitazone 2 µM (Cayman
Chemicals, Ann Arbor, MI, USA), human apotransferrin 10 µg/mL (Sigma-Aldrich, Saint
Louis, MO, USA), human insulin 20 nM (Sigma-Aldrich, Saint Louis, MO, USA), dexametha-
sone 25 nM (Sigma-Aldrich, Saint Louis, MO, USA), 3-isobutyl-1-methylxanthines 500 µM
(Sigma-Aldrich, Saint Louis, MO, USA), cortisol 100 nM (Sigma-Aldrich, Saint Louis, MO,
USA) and triiodothyronine 200 pM (Sigma-Aldrich). After the fourth day, the medium was
changed. Rosiglitazone, 3-isobutyl-1-methylxanthines and dexamethasone were removed
during the remaining 10 days of differentiation (differentiation B media). B media was
replaced every four days. Cells were considered fully mature 28 days post-differentiation
when clearly visible lipid droplets formed.

4.2. Cell Culture LiSa-2

The LiSa-2 human liposarcoma cell line, obtained from a retroperitoneal metastasis of a
liposarcoma, was generously sent by professor Wabitsch [19]. LiSa-2 cells are derived from
liposarcoma that grow cancerous in the presence of serum, while they retain a differentiated
adipocyte-like behavior in the absence of growth factors; thus, they are extensively used
in experimental models of visceral fat. LiSa-2 cells were cultured in medium containing
serum (DMEM/Ham’s F12 (1:1), 10% FCS, antibiotics), while a serum-free basal medium
was used for differentiation (DMEM/F12 (1:1) supplemented with 10 µg/mL transferrin,
15 mM NaHCO3, 15 mM HEPES, 33 mM biotin, 17 mM pantothenate, 100 U/mL penicillin
and 0.1 mg/mL streptomycin, 1 nM insulin, 20 pM triiodothyronine and cortisol 1 µM).
Differentiation into fat cells was evaluated by conventional microscopy (Diavert, Leitz,
Germany) at a magnification of 200 times. LiSa-2 cells reached a full differentiation when
their cytoplasm was completely filled with lipid droplets [19].
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4.3. Treatments

Both differentiated cell lines were treated with 60 µM D-chiro-Ins or myo-Ins for 72 h,
with a single medium change at 36 h. The selected concentration of inositols was intended
to reproduce the concentrations detectable in vivo following inositol supplementation. The
concentration was established on the previous findings from our group on the concen-
trations of both myo-Ins and D-chiro-Ins in vivo [35,50–52]. The time of treatment was
determined considering the half-life of UCP-1, which may range from 30 to 72 h [53,54].
Finally, the cells were washed with PBS, collected, and used for subsequent experiments.

SGBS and LiSa-2 cells were also tested to exclude mycoplasma contamination. The
absence of mycoplasma was verified by PCR analysis (PCR Mycoplasma Test Kit I/C,
PromoKine, PromoCell France).

4.4. RNA Isolation, RT-PCR, qPCR

Total RNA was isolated from differentiated adipocytes (LiSa-2 and SGBS) using Trizol
(Invitrogen Life Technologies, Waltham, MA, USA), according to the manufacturer’s instruc-
tions. RNA concentrations were determined by Nanodrop. A retro-transcriptase enzyme
(Takara, Osaka, Japan) was used to generate the cDNA, according to the manufacturer’s
instructions. The primer sequences are shown in Table 1. Finally, quantitative real-time
PCR (qPCR) experiments were performed in an Applied Biosystem 7500 fast (Applied
Biosystems, Waltham, MA, USA) as follows: 10 s at 94 ◦C, followed by 12 s (40 cycles) at
94 ◦C, 30 s at 60 ◦C. All experiments were performed in biological and technical triplicate.
Normalized gene expressions were calculated with the ∆∆Ct method. Human β-actin was
used as an endogenous control.

Table 1. Primer sequences used in qPCR experiments (by primer-BLAST).

Gene Protein Name Sequence 5′→3′ Amplicon Length NCBI Ref

ACTB β-Actin F: AGAAGGATTCCTAT-
GTGGGGG

R: CATGTCGTC-
CCAGTTGGTGAC 101 NM_001101.5

ESR1 ER-α F: GATGCTGAGCCCC-
CATACT

R: CACACG-
GCACAGTAGCGAG 128 NM_001122742.2

ESR2 ER-β F:
AGCTCAGCCTGTTCGA

R: TCTACGCATTTCCCCT-
CATCC 151 NM_001437.3

UCP-1 UCP-1
F:

GGAAAGAAACAGCAC-
CTAGTTT

R: CGTCAAGCCTTCG-
GTTGTTGCTA 197 NM_021833.5

PPARg-1 PPAR-γ1 F: CGTGGCCGCA-
GATTTGAA

R: CTTCCATTACGGAGA-
GATCCAC 166 NM_138712.5

PPARg-2 PPAR-γ2 F: GGTGAAACTCTGGGA-
GATTCT

R: CTCTGTGTCAAC-
CATGGTCA 102 NM_015869.5

4.5. Mitochondrial and Nuclear DNA Isolation and mitDNA Quantification by qPCR

Mitochondrial DNA was isolated from differentiated SGBS and LiSa-2 adipocytes
using the Mitochondrial DNA Isolation Kit (Abcam, UK), according to the manufacturer’s
instructions. Nuclear DNA was isolated from differentiated SGBS and LiSa-2 adipocytes
by Nuclear DNA Isolation Kit (Abcam), according to the manufacturer’s instructions.
qPCR experiments were performed in an Applied Biosystem 7500 fast (Applied Biosys-
tems) as follows: 20 min at 95 ◦C, and 50 cycles of 15 s at 95 ◦C, 20 s at 58 ◦C, 20 s
at 72 ◦C. Relative mitochondrial DNA content was calculated from the difference be-
tween the threshold cycle (CT) values for mitochondrial DNA and nuclear specific am-
plification. During the qPCR, we used diluted samples, 10µM from each primer (human
mitochondrial DNA specific primers: forward 5′-TTCTGGCCACAGCACTTAAA -3′, re-
verse 5′-TGGTTAGGCTGGTGTTAGGG-3′, nuclear specific primers (SIRT1 gene): forward
5′-GCAGGCATTCCTGGAAGAG-3′, reverse 5′-TGTGTGCCCTACACAATGC-3′).
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4.6. Ex Vivo Oxygen Consumption Rate Measurement

Oxygen consumption assay was performed using an oxygen consumption assay kit
(CAT: ab197243, Abcam, Waltham, MA, USA). Briefly, differentiated SGBS and LiSa-2
adipocyte cell lines (8.0 × 104 cells/well) were plated on 96-well cell-culture plates and
incubated overnight. After removing the media from all wells, they were replaced with
150 µL of fresh culture media. Reconstituted extracellular O2 consumption reagent (10 µL)
was added to each sample well. For the blank control well, 10 µL of fresh culture medium
was added. Each well was sealed by adding 100 µL of prewarmed high-sensitivity mineral
oil. For the measurement, the prepared plate was inserted into a fluorescence plate reader
preset to the measurement temperature (37 ◦C). All controls and samples were carried
out in technical triplicate. The extracellular O2 consumption signal at 5 min intervals for
30 min at Ex/Em = 380/650 nm was measured by Tecan Infinite F200 PRO microplate
reader. In the assay, as indicated, mitochondrial respiration depleted the oxygen within the
assay medium, quenching of the fluorescent dye was reduced, and the fluorescence signal
increased proportionally.

Data are expressed as the percentage effect of lifetime (µs; see Equation (1)) for the
treatment relative to the untreated control:

Lifetime (µs) (T) = (D2 − D1)/ln (W1/W2) (1)

where W1 and W2 are the times for the dual measurement windows and D1 and D2 are the
delay times prior to W1 and W2, respectively.

4.7. Statistical Analysis and Data Presentation

Statistical analysis was performed with R software from the R Foundation for Statistical
Computing (Vienna, Austria). Data were analyzed by one-way ANOVA. p-values ≤ 0.05
were considered statistically significant.

Figures show one out of at least three independent experiments providing similar
results or the mean (±S.E.) of at least three experiments.

5. Conclusions

Inositols play well-established roles in fat metabolism, and their contribution has been
extensively studied and described over the past fifty years [55], but our studies are the first
to associate it with WAT/BAT trans-differentiation mediating by ERs. In fact, our results
demonstrate that inositols could participate in WAT/BAT trans-differentiation through
two different nuclear receptors: ERs and PPAR-γ. Moreover, both the inositol isomers
tested seemed to participate in this process, even though to a different extent. These findings
support the recommendation to further test both the isomers and/or their combination in
preclinical studies to investigate whether these molecules can have positive effects in weight
loss. Indeed, recent observations from Kulterer and coworker [56] demonstrated that BAT
is less frequently detected in obese rather than in lean people. They also highlighted that
BAT is associated with visceral adiposity rather than with total body fat content per se.
Considering their findings and our results herein reported, we believe that our results
open new avenues on the physiological role of inositol stereoisomers in energy metabolism.
Moreover, although these in vitro results need further clinical verifications, our data offer
numerous opportunities for the use of inositol stereoisomers in therapeutic strategies to
help prevent or counteract obesity.
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