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Abstract: Polycystic ovarian syndrome (PCOS) is the most common endocrinological disorder in
women, in which, besides chronic anovulation/oligomenorrhea and ovarian cysts, hyperandro-
genism plays a critical role in a large fraction of subjects. Inositol isomers—myo-Inositol and
D-Chiro-Inositol—have recently been pharmacologically effective in managing many PCOS symp-
toms while rescuing ovarian fertility. However, some disappointing clinical results prompted the
reconsideration of their specific biological functions. Surprisingly, D-Chiro-Ins stimulates androgen
synthesis and decreases the ovarian estrogen pathway; on the contrary, myo-Ins activates FSH re-
sponse and aromatase activity, finally mitigating ovarian hyperandrogenism. However, when the
two isomers are given in association—according to the physiological ratio of 40:1—patients could
benefit from myo-Ins enhanced FSH and estrogen responsiveness, while taking advantage of the
insulin-sensitizing effects displayed mostly by D-Chiro-Ins. We need not postulate insulin resistance
to explain PCOS pathogenesis, given that insulin hypersensitivity is likely a shared feature of PCOS
ovaries. Indeed, even in the presence of physiological insulin stimulation, the PCOS ovary synthesizes
D-Chiro-Ins four times more than that measured in control theca cells. The increased D-Chiro-Ins
within the ovary is detrimental in preserving steroidogenic control, and this failure can easily explain
why treatment strategies based upon high D-Chiro-Ins have been recognized as poorly effective.
Within this perspective, two factors emerge as major determinants in PCOS: hyperandrogenism and
reduced aromatase expression. Therefore, PCOS could no longer be considered a disease only due to
increased androgen synthesis without considering the contemporary downregulation of aromatase
and FSH receptors. Furthermore, these findings suggest that inositols can be specifically effective
only for those PCOS phenotypes featured by hyperandrogenism.

Keywords: polycystic ovary syndrome; D-Chiro-inositol; myo-inositol; insulin resistance;
epimerase; hyperandrogenism

1. Hyperandrogenism: A Pivotal Role in the Pathogenesis of the Polycystic Ovary Syndrome

Polycystic ovarian syndrome (PCOS) is the most common cause of anovulation [1],
initially identified as an association of chronic anovulation/oligomenorrhea, with clini-
cal or biochemical hyperandrogenism [2]. The exact cause of PCOS is unknown, albeit
several metabolic, endocrine, and genetic factors have been credited to play a significant
role. A cornerstone was set in 2003, when the Rotterdam consensus revised the diagnostic
criteria, indicating two of three of the following criteria as mandatory for PCOS diagno-
sis: chronic anovulation or oligomenorrhea, clinical or biochemical hyperandrogenism,
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and polycystic ovarian morphology [3]. The Rotterdam statement has prompted an in-
tense debate, finally leading to an updated version of the previous criteria. Currently,
we distinguish four different phenotypes: phenotype A with the coexistence of clinical
hyperandrogenism/hyperandrogenemia (HA); oligomenorrhea/anovulation (OA), and
polycystic ovary morphology (P); phenotype B with HA and OA without P; phenotype C
with HA and P and regular ovulatory cycles; and phenotype D, where OA coexists with
P in the absence of HA [4]. Noticeably, hyperandrogenism and anovulation are tightly
linked to insulin resistance [5]. Deregulation of insulin signaling not only explains several
metabolic aspects of PCOS—independently of the associated obesity—but contributes to
modulating ovarian steroidogenesis towards a stable “androgenic” phenotype [6].

Women suffering from PCOS—excluding the phenotype D—share several clinical
features of hyperandrogenism, including hirsutism, acne, and alopecia [7]. Excessive
androgen production, either by adrenals or by ovaries—eventually by a combination of
both—play a relevant role in the pathogenesis of PCOS. From a systemic point of view,
abnormalities in the hypothalamic–hypophysis–adrenal axis (HPA)—triggered by several
physical/endocrine cues—can alter the properly balanced pulse frequency of gonadotropin-
releasing hormone, ultimately leading to an increased LH/FSH ratio [8]. The imbalance
in LH/FSH release contributes to enacting the proliferation of ovarian theca cells, leading
to increased androgen synthesis, given that LH stimulates ovarian androgen production,
whereas a relative deficit in FSH impairs follicular development. Furthermore, increased
insulin levels and insulin resistance amplify androgen synthesis from both adrenals and
theca cells of the ovary [9]. However, a compelling body of evidence suggests that ovarian
hyperandrogenism should be primarily ascribed to an intrinsic steroidogenic defect of
theca cells in PCOS [10], which in turn could be amplified by several systemic factors,
including deregulation of the crosstalk between HPA and the ovaries [9,11], metabolic and
microbiota factors [12,13], and insulin resistance.

2. A Light in the Dark: The myo-Ins/D-Chiro-Ins Connection

A thought-provoking paper published almost twenty years ago reported very intrigu-
ing results [14]. In PCOS patients with classical PCOS features, normal insulin levels, and
metabolic insulin sensitivity, the pharmacological reduction in insulin secretion induced a
significant decrease in blood testosterone levels. Of note, in the same cluster of patients,
total suppression of LH levels following the administration of long-acting GnRH agonist
leuprolide acetate was not as effective as the inhibition of insulin secretion in blocking
androgen production. This study clearly indicated that, even in the absence of overt insulin
resistance, the ovaries of PCOS women display an intrinsic sensitivity to normal endocrine
signaling (insulin and LH), which is ultimately responsible for increased androgen release.

How could we explain this abnormal sensitivity? A significant contribution in ex-
plaining this puzzle has been provided by Larner’s seminal paper demonstrating that
ovarian abnormal response to insulin alters the specific myo-Inositol/D-Chiro-Inositol
(myo-Ins/D-Chiro-Ins) ratio within the ovary [15]. Previous studies have shown that dia-
betes and insulin resistance is associated with the reduced transformation of myo-Ins into
D-Chiro-Ins in high-glucose-consuming tissues. This abnormal inositol pattern is primarily
ascribed to the impaired conversion mediated by tissue-specific epimerase, activated under
insulin stimulation. Impairment of insulin signaling, which characterizes insulin resistance,
will then inhibit myo-Ins conversion into its epimer [16]. D-Chiro-Ins is usually incorpo-
rated into glycosylphosphatidylinositol-anchored proteins (GPI), from which it is released
as inositol-phosphoglycan (IPG-P), an intermediary metabolite displaying a critical role in
transducing insulin effects [17]. A ‘functional’ increase in IPG-P values has been observed
following an oral glucose challenge in healthy individuals, but not in subjects with diabetes
mellitus [18]. Namely, needle biopsies, as well as autopsy studies performed on muscle
mass from subjects suffering from diabetes, confirmed a significantly reduced content of
D-Chiro-Ins with respect to control samples [19,20]. In turn, it has been documented that
reduced availability of D-Chiro-Ins is followed by several defects in the proper utilization
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of glucose [21], and the myo-Ins/D-Chiro-Ins ratio has been suggested as a measure of
insulin resistance [22].

Nevertheless, it is well established that ovarian cells from PCOS subjects retain in-
sulin sensitivity, even in those patients showing insulin resistance, as both insulin and
hyperinsulinemia still stimulate ovarian androgen production in PCOS [23]. Therefore,
it would be expected that insulin could increase myo-Ins conversion into D-Chiro-Ins
within the ovary, even in insulin-resistant women. Indeed, this is the case, as shown by the
previously quoted study from Larner’s team. In theca cells from both normal and PCOS
women, myo-Ins, D-Chiro-Ins levels, and epimerase activity have been investigated, show-
ing that epimerase activity was three times higher than normal in PCOS subjects, while
the myo-Ins/D-Chiro-Ins ratio was four times lower in PCOS subjects when compared
to normal theca cells. It is worth noting that, in this study, theca cells were stimulated
by using the same quantity of insulin [15]. Therefore, those results demonstrated that
theca cells from PCOS subjects not only retain their insulin sensitivity, but they transform
myo-Ins into D-Chiro-Ins with higher efficiency than normal theca cells, even under the
same insulin stimulation. Consequently, PCOS ovarian cells show a paradoxical insulin
“hypersensitivity” compared to peripheral tissues. Indeed, analyses of inositol content in
follicular fluid obtained from PCOS patients vindicated this hypothesis, by establishing
that the myo-Ins/D-Chiro-Ins ratio dramatically decreases in PCOS subjects with respect
to controls. In fact, while the myo-Ins/D-Chiro-Ins ratio is nearly 100:1 in normal subjects,
in the follicular fluid of PCOS women, that value is barely 0.2:1 [24].

Moreover, the increase in D-Chiro-Ins availability within the ovary following insulin
stimulation would provide increased chiro-inositol to be incorporated into precursor GPI-
phospholipid and or precursor GPI-protein. Insulin activates phospholipase anchored to
the external layer of cell membranes [25], thus further increasing the release of IPGs, the
intermediate messenger displaying several ‘insulin-mimetic’ activities. Therefore, we posit
that by raising ovarian D-Chiro-Ins, the insulin signaling would be amplified [26,27]

3. Consequences of Increased D-Chiro-Ins Synthesis in the Ovary

These results have outstanding consequences, given that IPGs have been shown to
be required for androgen synthesis downstream of insulin stimulation [28]. Noticeably,
increased IPG availability explains why insulin’s action on PCOS theca cells is massively
greater than on controls in increasing testosterone synthesis [29]. However, consequences
of increased D-Chiro-Ins availability are not restricted to androgen synthesis in theca cells
and involve granulosa cells as well.

A study performed on granulosa cells obtained from PCOS women has shown that
D-Chiro-Ins reduces the mRNA expression of both aromatase and cytochrome P450 side-
chain cleavage genes in a dose–response fashion [30]. Preliminary data from our laboratory
indeed confirm that D-Chiro-Ins enhances the activity of key androgenic enzymes (such as
3-βHSD) while specifically inhibiting aromatase (Cyp19A1) synthesis and FSH receptor
(FSHr) release in ovary cells obtained from PCOS animals. These preliminary findings
indicate that D-Chiro-Ins acts as a double-edged sword, by increasing androgen production
from theca cells while inhibiting the estrogenic response of granulosa cells.

These recent data can help explain some puzzling clinical results provided by treating
PCOS patients with high doses of D-Chiro-Ins. In a study authored by Nestler’s group, a
positive correlation between changes in IPG-P release and in insulin sensitivity in PCOS
patients treated with very high levels of D-Chiro-Ins (1500 mg twice daily for 6 weeks) was
observed [31]. Unfortunately, that investigation was incapable of confirming the beneficial
effects on ovary function previously obtained by the same team with low doses of D-Chiro-
Ins in PCOS patients [32]. Moreover, high D-chiro-Ins levels negatively influence the quality
of oocytes and blastocysts [33]. Conversely, treatment with D-Chiro-Ins (1 g/day) on male
volunteers led to a dramatic reduction in both estrone and 17β-estradiol levels (−85.0%
and −14.4%, respectively), while testosterone and dehydroepiandrosterone became highly
increased (+23.4% and +13.8%, respectively) [34]. These results suggest that D-Chiro-Ins
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unexpectedly displays anti-estrogenic effects, likely through inhibition of aromatase activity.
This property is indeed currently under study for the treatment of male and female clinical
conditions that would benefit from an androgen increase and/or estrogen decrease [35].
Based on those results, D-Chiro-Ins should be deemed detrimental in PCOS subjects,
given that aromatase functional deficiency plays a critical role in the pathogenesis of the
syndrome [36,37]. In fact, since the nineties, some reports anticipated that the follicular fluid
of PCOS women “contains one or more endogenous inhibitors of aromatase activity” [38].
It is likely that D-Chiro-Ins could perform precisely such a role. Indeed, this hypothesis has
been investigated on wild-type female mice treated with increasing doses of D-Chiro-Ins
for almost five ovulatory cycles [39]. Changes in ovarian histology and tissue expression of
both aromatase and testosterone were analyzed. At any rate, some caution is needed in
extrapolating data obtained from models in which PCOS is experimentally triggered by
using either androgen administration or continuous light exposure; results provided by
the aforementioned study demonstrated that high doses of D-Chiro-Ins supplementation
profoundly altered ovarian histology, increased serum testosterone levels, and reduced
aromatase levels. Overall, these data indicate that, contrary to preliminary expectations [32],
D-Chiro-Ins exerts a detrimental effect on ovary steroidogenesis.

Nonetheless, these assumptions have been challenged for a while by controversial
clinical results obtained in PCOS patients treated with inositol formulations, in which both
myo-Ins and D-Chiro-Ins have been associated according to different ratios [40].

Again, this is a paradox that prompted us to reconsider the basic physiology of
inositol to assess if inositol isomers exert either complementary or opposite actions upon
ovarian steroidogenesis.

4. Inositols in Mammals

In the middle of the 19th century, Johann Joseph Scherer extracted a polyol-a hexa-
hydroxy-cyclohexane compound—hence named “inositol”—from muscle cells [41]. The
chemical structure was ascertained later, and the configuration of all of its related isomers only
recently has been clearly described [42]. Noticeably, the hexahydroxycyclohexane backbone
displays a bewildering plasticity in allowing the emergence of nine different isomers: cis-, epi-,
allo-, myo-, neo-, scyllo-, L-chiro-, D-Chiro-, and muco-inositol. Myo-Inositol is by far the most
abundant form in nature, while two other ‘minor’ isomers—scyllo- and D-Chiro-Ins—have
been shown to exert an appreciable biological function [43]. It is now well established that
myo-Ins is an essential component in many physiological processes and biochemical reactions.
However, it is still difficult to identify a clear metabolomic profile [44], as myo-Ins in the
organism derives from different sources—exogenous and endogenous—and it is further
metabolized according to an intricate network of biochemical transformations.

In humans, myo-Ins (~1 g/day) primarily comes from dietary intake, albeit a rele-
vant fraction is synthesized endogenously, in a variable range (from 1 to 4 g/day), de-
pending on several factors, yet requiring a full assessment [45]. Within the mammalian
cell, myo-Ins is synthesized from glucose-6-phosphate (G6P), which is isomerized to
inositol-3-phosphate (Ins-(3)-P) by D-3-myo-inositol-phosphate synthase (inositol synthase,
MIPS1) [46], encoded by the inositol-3-phosphate synthase 1 (ISYNA1) gene [47]. Then,
inositol monophosphatase-1 (IMPA1 or IMPase) dephosphorylates Ins-(3)-P to release free
myo-Ins [48]. The ISYNA1 is an essential gene for proper replication and differentiation,
as knockout cells cultured in inositol-free media cannot proliferate, whereas ISYNA1−/−

animals showed a general modification in the global gene expression profile and a signif-
icant increase in embryonic lethality [49]. It is worth noting that, while in yeasts, for the
INO1 gene—the homologs of ISYNA1—the environmental availability of inositol regulates
inositol-3-phosphate synthesis from G6P through the modulation of the Ino2/Ino4 complex
that “senses” inositol concentrations [50], in mammals, ISYNA1 transcription seems to rely
principally upon internal cellular signals [51]. Glucose availability plays a pivotal role, as
glucose shortage activates AMPK that, in association with phosphatidic acid (PA)—released
by cell membranes—downregulates ISYNA1 expression, and hence MIPS1 activity [52].
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This effect is dependent on the nuclear translocation of IP6K1—an enzyme responsible
for the conversion of inositol hexakisphosphate (InsP6) into diphosphoinositol pentak-
isphosphate (InsP7/PP-InsP5)—that senses changes in the ATP/ADP ratio [53]. Reduced
glucose availability will then inhibit endogenous myo-Ins synthesis, and consequently, it
is tempting to speculate that myo-Ins metabolism would be likely “disturbed” in several
conditions, including diabetes, insulin resistance, and cancer, in which cellular “avidity”
for glucose is raised.

The cell’s machinery uses myo-Ins to build up several derived inositol-phosphates
(InsPs) as well as complex macromolecules, including phosphatidyl-inositol (PI), its seven
phosphoinositides (phosphatidyl-inositol phosphate, PIP), and glycosylphosphatidylinositol-
anchored proteins (GPI), localized mostly at the surface of cell membranes [54]. Myo-Ins
is incorporated into eukaryotic cell membranes as phosphatidyl-myo-inositol. Hence, the
inositol ring can be phosphorylated by a variety of kinases on the three, four, and five
hydroxyl groups in seven different combinations, leading to three main phosphoinositides:
PIP1, PIP2, and PIP3. A pivotal hub within that network is constituted by phospathidyl-
Inositol-4,5-phosphate (PIP2), which can be hydrolyzed by phospholipase C (PLC), then
splitting PIP2 into 1,2-diacylglycerol (DAG) and InsP3, a key, second messenger in the
transduction of several endocrine signals [55]. Inositol 1,4,5-trisphosphate (Insp3) binds
to specific InsP3-receptors, inducing calcium release from the endoplasmic reticulum. As
for other second messengers, InsP3 has a short half-life, and it is rapidly metabolized
through one of the two following pathways [56]: removal of the 5-phosphate from the
inositol ring by Ins-polyphosphate 5-phosphatases, resulting in the release of InsP2, and
successively of InsP1, before being finally dephosphorylated to reconstitute free myo-Ins.
On the contrary, very different biochemical pathways lead to successive phosphorylation
of InsP3 to produce InsP4, under the action of Ins(1,4,5)P3 3-kinase [57]. Successively,
1,3,4,5,6-pentakisphosphate 2-kinase [58] catalyzes the synthesis of InsP5 and InsP6, albeit
other enzymes–IPK1 and IPK2–can promote InsP6 synthesis directly from Ins(1,4,5)P3 [59].
Recently, it has been shown that PLC-generated InsPs are rapidly recycled to inositol, while
the enzyme Inositol tetrakisphosphate 1-kinase 1 (ITPK1) phosphorylates Ins(3)P originat-
ing from glucose-6-phosphate, and Ins(1)P generated from sphingolipids, to enable the
synthesis of InsP6 [60]. This finding suggests that InsPs with a higher number of phosphate
units than InsP3 primarily come from endogenous myo-Ins, while lower InsPs, InsP3,
InsP2, and InsP1, are provided from phosphoinositides hydrolysis. Currently, as many
as 63 possible inositol phosphate esters have been identified as participating in biological
functions [61]. However, inositol hexakisphosphate (InsP6) is the most represented among
those phosphate derivatives [62], and it represents the starting brick to which phosphate
groups are added, yielding inositol pyrophosphates (PP-IPs), in which one or two energetic
di-phosphates bonds are aggregated around the six-carbon inositol ring [63]. Inositol
pyrophosphates—and related kinases [64]—participate in the modulation of numerous
biological functions in mammals, including morphogenesis, metabolic, and proliferation
processes [65,66]. Remarkably, some studies indicate that inositol pyrophosphates have
a regulator role in glucose and phosphate metabolism by finely tuning the balance be-
tween glycolysis and mitochondrial oxidative phosphorylation in ATP production [67,68]
(Figure 1).

Aside from the functions exerted by inositol-derived metabolites, myo-Ins, as such,
has been described as a modifier of a number of processes involving endocrine signaling,
morphogenesis, and reproduction, just to mention a few [69–71]. This evidence comes
primarily from observational clinical studies, while experimental investigations—in vitro
as well as in vivo—are still scarce. It is, therefore, hard to explain results obtained by adding
myo-Ins in cell cultures or to the animal diet by using models that do not take into account
the metabolic transformations to which the inositol molecule is committed after being
absorbed by living cells. There is no doubt that we urgently need to explore the intracellular
dynamic that governs myo-Ins transformation, and how the inositol network changes under
different physiological and pathological circumstances. This is a very critical issue, as
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significant changes occur in myo-Ins metabolism in specific physiological and pathological
conditions [72,73]. Furthermore, these alterations supposedly play causative roles in the
pathogenetic process and are, therefore, plausible targets for medical interventions.
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Figure 1. Main intracellular signaling pathways in which myo-inositol participates. Inositol
is mostly involved in (1) cytoskeleton remodeling; (2) insulin transduction (noticeably through
inositol-phosphoglycan containing myo-Ins (IPG-A) and D-Chiro-Ins (IPG-P) released from GPI
(glycosylphosphatidylinositol-anchored proteins) and glucose metabolism); (3) genomic signal-
ing, especially through the participation of inositol hexakisphosphate (InsP6) and pyrophosphates.
In addition, myo-Ins—and its isomer D-Chiro-Ins—exert relevant effects upon the steroidogenic
pathway in ovary cells. Cellular myo-Ins is supplied by external uptake and endogenously syn-
thesized by ISYNA1 gene. PIP2 (3-4), 1-Phosphatidyl-1D-myo-inositol 3,4-bisphosphate; PIP2(4-5),
1-Phosphatidyl-D-myo-inositol 4,5-bisphosphate. PIP1, 1-Phosphatidyl-D-myo-inositol-phosphate;
InsP1, inositol monophosphate; InsP2, inositol bisphosphate; InsP3, myo-inositol 1,4,5-trisphosphate;
InsP4, myo-inositol-1,3,4,5-tetraphosphate; InsP6, myo-Inositol 1,2,3,4,5,6-hexakisphosphate; ER,
endoplasmic reticulum; 5-PP-IP5, inositol 5-diphospho-1,2,3,4,6-pentakisphosphate (5-IP7); IP6K1,
inositol hexakisphosphate kinase 1; PLC, phospholipase C.

5. The Intriguing Role of D-Chiro-Ins

As previously recalled, under insulin stimulation, tissue-specific epimerases convert
myo-Ins into its stereoisomer D-Chiro-ins. Unknown factors finely tune this irreversible
reaction to deliver inositol isomers according to variable tissue-dependent needs [74]. The
two isomers participate in the constitution of GPI anchors in which they represent the
IPG core. IPGs incorporating either myo-Ins (IPG-A) or D-Chiro-Ins (IPG-P) are released
upon stimulation of insulin by hydrolysis of GPI lipids located on the outer leaflet of the
cell membrane. IPGs affect intracellular metabolic processes, namely by activating key
enzymes controlling glucose metabolism [75]. It is worthy of note that IPGs both increase
mRNA and protein expression of the insulin receptor substrate (IRS1), thus improving
receptor-mediated insulin transduction. This effect requires the up-regulation of PI3K and
the phosphorylated activation of AKT (pAKT) [76,77]. In addition, by increasing phosphate
dehydrogenase (PDH) activity, IPGs enhance the oxidative metabolism of glucose, resulting
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in increased availability of ATP [78]. This is a pivotal tipping point, given that a decrease in
the ATP/ADP ratio—together with insulin stimulation—amplify the enzymatic activity of
IP6K1, thus leading to an increased synthesis of 5-diphosphoinositol pentakisphosphate
(5-IP7). In turn, 5-IP7 reduces insulin sensitivity by preventing the interaction between
AKT and PI3K, thus closing the regulatory loop. Moreover, the overactivation of IP6K1 is
strongly associated with both insulin resistance and weight gain [79]. Therefore, we can
hypothesize that the reduced availability of inositol-phosphoglycans could flatten ATP
levels, thus enhancing IP6K1 activity and pyrophosphate synthesis. As expected, IP6K1
inhibition efficiently counteracts insulin resistance and obesity [80]. It is worth noting
that myo-Ins dramatically downregulates IP6K1 activity by increasing ATP availability
and miRNA 125a-5p release [81]. Therefore, myo-Ins-dependent modulation of IP6K1 can
contribute to mitigating insulin resistance.

The insulin-sensitizing capabilities of both myo-Ins and D-Chiro-Ins have been con-
firmed by several clinical studies [82,83]. However, it is unlikely that the improvement in
insulin transduction could explain, by itself, the rescue of the ovarian and reproductive
function obtained in PCOS patients treated with myo-Ins associated or not with D-Chiro-
Ins. This statement helps explain why treatment with antidiabetic drugs, while improving
several metabolic markers associated with PCOS [84], including androgen production, is
still scarcely effective in ameliorating ovary function, as testified by the observed decrease
in follicles number and quality after treatment with metformin [85].

Indeed, as previously recalled, D-Chiro-Ins given in isolation enhances androgen
synthesis. Yet, as important as it could be, this effect does not explain in full the androgenic
phenotype of PCOS patients, given that increased androgen production would, in turn,
increase aromatase activity, leading to a proportional increase in estrogen release [86].
Theca cell androgens act not only as a substrate of estrogen synthesis, but also modulate
FSH action via the activation of androgen receptors [87] and cAMP [88]. Furthermore,
insulin and Insulin Growth Factor-1 (IGF-1) synergize with testosterone in amplifying FSH-
enhancing effects upon aromatase expression [89]. Surprisingly, increased androgen release
within the PCOS ovary is associated with reduced aromatase levels and impaired FSH
transduction. Thus, D-Chiro-Ins not only enhances androgen synthesis but also impairs the
estrogenic response of granulosa cells to FSH and androgens. This is a critical point, as it
suggests that PCOS pathogenesis should integrate both an increase in androgens as well as
a reduction in estrogens.

Intriguingly, clinical investigations in which myo-Ins is associated with very low doses
of D-Chiro-Ins provided unexpected results, indicating that, while retaining the beneficial,
insulin-sensitizing effects exerted by D-Chiro-Ins, the addition of myo-Ins allowed rescuing
almost completely the ovarian function [90,91]. These apparently puzzling results suggest
that myo-Ins and D-Chiro-Ins exert opposite effects on steroidogenic pathways within the
ovary [92].

Treatment with myo-Ins (2 g twice a day) significantly decreases the LH/FSH ratio in
the plasma of PCOS women [93,94], while supplementation with myo-Ins during in vitro
fertilization allows the reduction in the doses of recombinant FSH administered [95]. More-
over, studies currently ongoing show that myo-Ins increases FSH receptor and aromatase
synthesis in granulosa cells, probably through an FSH-independent mechanism of action,
as myo-Ins raises the transcription of aromatase also in breast cancer cells without any
previous FSH administration [96].

These data indicate that myo-Ins and D-Chiro-Ins play an opposite role in ovarian
steroidogenesis, namely acting upon aromatase, androgen release, and FSHr expression.
Again, let us outline that the downregulation of FSH receptors and aromatase in granulosa
cells represents a hallmark of PCOS [97]. In this condition, it would be reasonable to expect
that D-Chiro-Ins supplementation could worsen the clinical evolution of the syndrome.
Such a hypothesis has been vindicated by a recent study performed in PCOS rodents
treated with myo-Ins and D-Chiro-Ins according to very different ratios [70]. The report
shows that only treatments with high myo-Ins concentrations (and low D-Chiro-Ins content)
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have proven to be effective in treating PCOS mice. In that study, animals were treated
with different myo-Ins/D-Chiro-Ins formulas (from 5:1 to 80:1), and only mice receiving
myo-Ins/D-Chiro-Ins in a 40:1 molar ratio made a fast and almost full recovery from
PCOS signs and symptoms. Interestingly, formulas with higher D-Chiro-Ins content were
demonstrated to be ineffective or even detrimental, ultimately worsening several PCOS
characteristics. Noticeably, histological investigations revealed that the theca layer resulted
in having almost double the thickness in controls and mice treated with high D-Chiro-Ins
concentrations, indicating that this treatment induced functional androgenic hyperplasia.
Conversely, treatment with myo-Ins/D-Chiro-Ins according to the 40:1 ratio (i.e., the
physiological levels found in the blood) almost completely restores the normal architecture,
with a physiological relationship between theca and granulosa cell layers.

Some observational studies have confirmed these findings, indicating that treatment
based upon a proper myo-Ins/D-Chiro-Ins ratio (40:1) can efficiently counteract the fore-
most PCOS signs and symptoms [98]. Conclusively, the negative effect induced by D-Chiro-
Ins upon ovary steroidogenesis ultimately vindicates the “paradox” argued by Unfer [99].
As previously recalled, myo to D-Chiro conversion is fostered by insulin, and in insulin-
resistant patients, this would lead to a significant deficit of D-Chiro-Ins in many tissues.
However, insulin resistance is not associated with impairment in the transduction of the
insulin signal at the ovarian level, given that hyperinsulinemia still stimulates ovarian
androgen production in PCOS, and can likely act similarly upon D-Chiro-Ins synthesis,
thus finally impairing myo-Ins availability [15].

Remarkably, under insulin stimulation, the highest conversion rate of myo-Ins into
D-Chiro-Ins is close to 9%, and was detected in the liver and muscle, two important insulin-
sensitive areas, whereas in the heart and brain, this is less than 2%. These differences
highlight that tissues display differential needs of both isomers to fulfill their specific
metabolic demands. Insulin resistance can dramatically impair D-Chiro-Ins levels in many
tissues, resulting in low intracellular levels of D-Chiro-Ins [20]. However, D-Chiro-Ins is
unexpectedly increased in the follicular fluid recovered from PCOS ovaries, thus further
indicating that PCOS ovaries display an astonishing insulin sensitivity and promote a
sustained conversion of myo-Ins into D-Chiro-Ins [24]. To sum up, ovary tissue in PCOS
subjects shows a significant deficit in myo-Ins content. Hence, this shortfall should be
corrected to normalize ovarian functions.

Insulin resistance cannot explain the complexity of the polycystic ovary syndrome,
given that this hypothesis is biased by assuming as a premise that PCOS pathogenesis
essentially relies upon defective insulin transduction due to impaired availability of in-
ositolphosphoglycans. This model leaves aside the opposite effects directly triggered by
myo-Ins and D-Chiro-Ins upon ovarian steroidogenesis, and underestimates the specific
insulin hypersensitivity displayed by the ovary in PCOS subjects. Obviously, the increased
insulin secretion, as that observed in insulin-resistant subjects, can amplify the steroido-
genic response of the ovary by raising D-Chiro-Ins levels in the gonads. Nevertheless, it
cannot explain the abnormal insulin sensitivity displayed by the ovaries of PCOS patients,
which show an increased presence of androgens and their related enzymes when stimulated
by LH and insulin with respect to normal controls [100]. Thus, instead of being triggered
by insulin resistance, PCOS should alternatively be considered as a syndrome of ovarian
“hypersensitivity” to insulin [101].

Conclusively, insulin resistance is not a general feature of PCOS, since the prevalence
of insulin alterations involves barely around 60% of patients [102]. Furthermore, it is
puzzling why young PCOS women without insulin resistance still respond to myo-Ins
treatment. In these women, by assuming that myo-Ins supplementation could “normalize”
the myo-Ins/D-Chiro-Ins ratio within the ovary, we may confidently hypothesize that
the increased bioavailability of myo-Ins—at levels overcoming the saturation threshold of
ovarian epimerase—“rectifies” the inositol ratio, reactivating aromatase activity, restoring
FSHr–based transduction, and ultimately reducing androgen synthesis [103,104]. Therefore,
we suggest that the primary pathogenetic defects in PCOS could be an intrinsic abnormal
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insulin responsiveness in the ovary, leading to increased androgen synthesis altogether
with reduced estrogen availability; meanwhile, other systemic factors (insulin resistance,
deregulation of the hypothalamic-pituitary-axis, and obesity, just to mention a few) can
potentiate this mechanism and exacerbate the overall clinical picture. The altered balance
between myo-Ins and D-Chiro-Ins, resulting in a relative excess of the latter component,
may represent a causative, relevant factor dramatically fostered by insulin secretion, even
in the absence of an overt condition of insulin resistance.

6. Conclusions

The conclusive pathogenic hypothesis based on the preliminary hints provided by
Larner [15] and Unfer’s [24] papers—vindicated by successive clinical evidence—suggests
that D-Chiro-Ins alone stimulates androgen synthesis and decreases the ovarian estrogen
pathway. On the contrary, myo-Ins activates FSH response and aromatase activity, finally
mitigating ovarian hyperandrogenism (Figure 2). This would imply that inositols can be
highly effective for those PCOS phenotypes featured by hyperandrogenism; otherwise, as
in the case of phenotype D, they would not have a cogent therapeutic rationale.
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Figure 2. Opposite effects upon ovary steroidogenesis of myo-Ins and D-Chiro-Ins. Insulin stimula-
tion promotes the release of phosphoglycans, containing either myo-Ins (IPG-A) or D-Chiro-Ins
(IPG-P). Moreover, insulin activates the epimerase-dependent transformation of myo-Ins into
D-Chiro-Ins. Test, testosterone; DHEA, dehydroepiandrosterone; Cyp-19A, aromatase.

When the two isomers are given in association—according to the physiological ratio
of 40:1—patients could benefit from the insulin-sensitizing effects displayed mostly by
D-Chiro-Ins. Yet, Larner’s study indicates clearly that we need not postulate insulin
resistance to explain PCOS pathogenesis, given that insulin hypersensitivity is likely a
common feature of PCOS ovaries. Indeed, even in the presence of a physiological insulin
stimulus, the PCOS ovary synthesizes D-Chiro-Ins four times more than that measured in
control theca cells. The increased D-Chiro-Ins within the ovary is detrimental to ensuring
proper steroidogenic control, and this failure can easily explain why treatment strategies
based upon high D-Chiro-Ins have been poorly effective. Within this perspective, two
factors emerge as major determinants in PCOS: hyperandrogenism and reduced aromatase
expression. Therefore, PCOS could no longer be considered a disease due to only increased
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androgen synthesis, without considering the contemporary downregulation of aromatase
and FSH receptors.

However, that model raises several unanswered issues, which should be addressed by
future studies.

First, why do different tissues show different myo-Ins/D-Chiro-Ins ratios, and how
could differences in epimerase activity explain these data? Is there any difference in the
structure of the D-Chiro-Ins epimerase among different tissues? In other words, what
factors actually shape the different epimerase sensitivity to insulin in different histological
contexts? Second, are there any other factors that prevent theca androgens from undergoing
the physiological conversion into estrogens when ovaries are treated with D-Chiro-Ins?
Third, how do inositols modify other endocrine receptors, LHr, AR, and ER, when both
theca and granulosa cells are treated with both the two inositol isomers? Some preliminary
reports show indeed that alternative splicing dramatically alters AR recruitment and
androgen-induced expression of genes related to folliculogenesis in human granulosa cells,
namely by impairing aromatase expression [105]. It is time to investigate how inositols
could modify this picture.

Moreover, how does myo-Ins supplementation modify the complex inositol-related
network, and how could inositol-related metabolites influence the overall picture? To obtain
a reliable picture, we should be able to capture the whole metabolic fate of myo-Ins when
added to a specific tissue/cellular context and correlate changes in inositol metabolism
with the associated biochemical pathways [47].

Finally, maybe we should start thinking of tailored therapies for the different PCOS
phenotypes, particularly for the non-hyperandrogenic D phenotype, which could be prop-
erly managed by natural, active compounds other than inositols.

Overall, these tasks are challenging. Integrated, multidisciplinary approaches—performed
in in vitro and in animal studies—are warranted to address those issues, hence providing a
compelling confirmation of the proposed pathogenetic hypothesis.
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